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We consider the problem of bringing the controlled motion z(t) into a 
neighborhood of the random point y(t). The displacements of y(t) repre- 
sent a stochastic diffusion process [ll, and the motion of z(t) is de- 
scribed by linear differential equations involving the control function 
u. The control function u[t, y, zl is formed at each instant of time t 
on the basis of the realized values of y(t) and z(t). It is shown that 
the problem of bringing the point z(t) into an e-neighborhood of y(T) 
(T > 0) with a probability p < 1 has a finite solution u[t, y, zl if the 
motion of z(t) is completely controlled in a certain sense and the para- 
meters of the process y(t) are held within certain bounds. When the 
average value M{y( t)) is described by linear equations, we obtain an 
explicit form of the control function u which is a linear function of y 
and Z. Several optimal control problems are discussed incidentally. The 
problem is solved by the Liapunov function method [2,3] modernized for 
the present problem. This modernization makes use of concepts from the 
theory of dynamic programming [41: 

1. Preliminary remarks. ‘Ihe present article considers two motions 
in n-dimensional space: a tracked random motion y(t) and a tracking con- 
trolled motion z(t). We shall describe these motions. 

We shall assume that y(t) = {yl(t), . . . . y,(t)) describes an R- 
dimensional diffusion-type* stochastic process (see, for example, [l, 
pp. 247-2621). Ihe y(t) process can be described intuitively as follows. 

l Reference [I] describes a scalar diffusion process (n = 1); neverthe- 
less, here and in what follows we shall refer to [ll when we consider 
vector processes, since the transition from the case n = 1 to the 
case n > 1 requires no essential theoretical changes in the dis- 
cussion. 
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The change y(t,) - y(t,) is made up of small random increments dy(t), 
each of which is a Gaussian random variable with a mean value and matrix 
of second moments of an order corresponding to the time interval dt. 

In other words, during the time dt the point y(t) is displaced by 
some amount mdt and is distributed according to the normal law, with 
dispersion of the distribution proportional to dt. 

the 

For this reason we shall describe the process y(t) by the "differ- 
ential equationW 

(1-l) 

Here m is a known n-dimensional vector function {a;), the matrix R is 
an n-by-n matrix {rij), and q(t) is an n-dimensional random vector whose 
components q;(t) are independent scalar processes of Brownian motion. 

The processes q;(t) are consequently Gaussian processes with inde- 
pendent increments satisfying the conditions 

M{% (h) - 4ik~) = 0 (i = 1, . . . ( n) 

M {rqi (LJ - Qi (h)l [Qj (b) - qj (h)I) = I t2 - tlj h 
(4i = 0, i # j, &ii = 1; i = 1, . . . , n; j = 1, . . . , n) 

(1.2) 

(1.3) 

The symbolM{a) will be used to denote the mathematical expectation 
of the random variable a, and the symbol MaI@ to denote the conditional 
mathematical expectation of a. 

'Zhe elements r.. 

moments of the ran 3 
of the matrix R define the matrix {a..dt} of second 
om distribution of the quantity dy(t ):'namely 

Gj (t, Y) = 5 rik (4 ?/I ‘jr (t, ?I) (1.4) 
k=l 

The matrix {aii) is positive semi-definite. 

Let us define more precisely the meaning of Equation (l.l), which is 
used for the intuitive description of the process y(t). It is assumed 
throughout this article that the domain of variation of the argument t 
is the interval [O, ~1 (T > 0). Then Equation (1.1) can be interpreted 
strictly by means of a stochastic integral equation (see, for example, 
[l, pp. 250-2581) 

Y(t)-_g(O)=Sm(s,y(s))ds+S1R(s,y(s))dq(s) 
0 0 

(1.5) 

Here the initial condition y(O) is assumed to be fixed, and the 
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integrals on the right have the meaning of stochastic integrals (see, for 
example, cl, pp. 392-4041). 

We shall denote the norm of the vector g by the symbol llgll. let the 
functions m and R be continuous and satisfy Lipschitz conditions in y: 

1 rnt (t, g(l)) - mi (4 yt2)) I< K H y(l) - yc2) 11 ( i = i ,...,n 

1 r{j (t, j)(l)) - rij (t, yc2)) ] < K 11 y(l) - yc2) 11 I- ,...,n ‘--1 > 

and let them be bounded as l/y]/ - 0. 

II m 6 3) II < K (1 + II Y II 2P ( i=i,...,n 

IPij(trY)I\<K(l +IIYI12)” j=l,...,n > 
(K = const) 

‘Ihen there exists a random process y(t) which satisfies Equation (1.5) 
for every t E LO, T 1 (with a probability of unity). 

Almost all realizations y(o, t) of this process y(t) are continuous 
in the interval CO, TI and can be continued over the entire interval in 
the sense that 

~@=(Ily(~,t)l12~ o,<t<T)l < 00 

let the controlled motion of z(t) be described by the linear vector 
differential equation 

dz 
- = A (t)z + b(t) u 
dt (1.6) 

where z(t) = z,(t), . . . . z,(t) is an n-dimensional vector, A(t) is an 
n-by-n matrix with continuous elements aii(t), b(t)=b,(t), . . . . b,(t) 
is a continuous n-dimensional vector, and u is a scalar quantity which 
describes the controlling effect. If in Equation (1.6) u is a suffi- 
ciently smooth function, then Equations (1.1) and (1.6) give rise to a 
random process {y(t), z(t)) f or every initial condition y(O), z(0). 

let us clarify this assertion. If the function u[t, y, zl is continu- 
ous, satisfies Lipschitz conditions in y and z 

1 u [t, y(l), z(l)] - u [t, y(2), z(2)] I < K 11 {y(l), z(l)} - {y(? Z(2)> II (1.7) 

and the boundedness condition 

I J-4 It, Y, 21 I < K (1 + II Y (1 2 + II 2 II 2 P (K = const) (13 

then there exists a 2n-dimensional stochastic process {y(t), z(t)) 
satisfying Equation (1.5) and the equation 
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(1.9) 

almost all realizations {y(t, 01, .z(t, 0)) of which are continuous for 
t E [O, ~1 and which is continuable over the whole interval [O, ~1 in 
the sense that 

~~max(Ue%o~ a%~)lla), o\<t\<q<w (1.10) 

It is exactly this meaning that we will attach hereafter to the ex- 
pression: “Ihe process {y(t), z(t)) is described by the equations (1.1) 
and (1.61.” 

Control functions u[t, y, z] satisfying the conditions (1.7) and (1.8) 

(for any K = const) will be called admissible. ‘Ihe set of admissible con- 
trol functions u will be denoted by the symbol U. 

‘Ihe initial conditions {y(O), z(O)) of the process {y(t), z(t)) will 
be assumed to be fixed (random values identically equal to y(O), z(O)). 

We shall use the symbol P[a; y(O), z(O)1 to denote the probability of 
events a related to the random variables y(t), z(t) with initial condi- 
tions y(O), z(O), and we shall use the symbol P[a(p; y(O), z(O)1 to de- 
note the conditional probabilities of these events. Also, if it should 
become necessary to emphasize the role played by the initial conditions, 
we shall write the symbol for mathematical expectation as M{a; y(O), 
z(O)) or Malp, y(O), z(O)). Wh ere the meaning is not in doubt, the 
symbols y(0) and z(O) will be omitted in the notation for P and dl. 

The fundamental result of the article will be formulated for the case 
when the quantity m(t, y) is a linear function of y, that is, 

M (h Y) = M (0 Y (1.11) 

Here M(t) is a continuous n-by-n matrix function {m..(f)). In this 

case we may suppose that My(t) 1 Y(T) = q}, the averagl’of y(t) for 
t>T, satisfies the equation 

dkf (Y (0 I Y (7) = rll 
dt = M (0 M {?I PI I Y (f> = rl) (1.12) 

obtained from (1.1) by averaging. We shall denote by 
the fundamental matrix of solutions of the system (1 
Then 

M{?f(0(?/(~) = ‘?I =M(G,Qrl 

the symbol M{t, T) 
12) (MT, T) = E). 

(1.13) 
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In particular, if M(t) = M = const for t E;. [O, ~1, then 

M {y (t) 1 y (z) = q} = e*(++q (1.14) 

2. Statement of the problem. Let us consider the process {y(t), 

z(t)), described by Equations (1.1) and (1.6) for u E. II. 

'lhe problem consists in the choice of a control function u" e U for 

which the motion of z(t) at a given moment t = T > 0 is brought into a 

neighborhood of the point y(T). Stated more exactly, for given values 

T > 0, E > 0, N > 0 and p < 1 it is required to find a function u= u”[t, 
y, zl E II such that when this function is substituted into Equation 
(1.9), the stochastic process {y(t), z(t)) described by Equations (1.5) 

and (1.9) will satisfy the condition 

p I II Y m - 2 m II < 8; Y (Oh z u-41 > P (2.1) 

for all initial conditions 

II Y (0) II < NV IIY(Ob-zo)II<~ (2.2) 

One more restriction should be added to the problem conditions. Since 

the control resources must be assumed to be limited, we shall require 

the desired control function u" to satisfy the restriction 

T 

s M W’ It, Y (9, z WI)"; Y 03, 2 (O)} dt < 00 (2.3) 

0 

if lljCO>{lSN, lly(O) -z(O) II GN. 
Let us clarify the meaning of the problem. 'lhe control function 

u = u" e II is chosen as a function of the variables t, y and z. This 

means that the value of the control function is defined at each instant 

of the process T 6 10, Tl on the basis of measurement of the realized 
values y(7), Z(T). It is assumed, consequently, that in the control pro- 

cess it is possible to measure the values of y(r) and Z(T) and instan- 

taneously transmit a signal giving the results of the measurement to a 

control apparatus which will generate an output u = u'[T, Y(T), z(t)]. 
‘Ihe future values of y(t) and z(t) for t > T are unknown, but the 

stochastic prognosis of y(t) and z(t) is taken into account in defining 

the function uO[T, Y(T), Z(T)]. Such a statement of the problem is in 

agreement with optimal control problems involving measurable coordinates 

and random disturbances. Such problems have been considered, for example, 

in [5-101. 

It should be noted that the control function u" which brings z(t) 
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into a neighborhood of y(t) cannot be 

pursuit rule which at each instant of 

dz(t)/dt in the direction of y(t). If 

in tracking 319 

chosen in our case by a simple 

time t points the velocity vector 

such a pursuit were realizable, the 
solution of the problem would be considerably simplified. In the present 

case, however, u is a scalar quantity, so that at time t, by varying 

u(- 0~ < u < m), we can rotate the vector dz(t)/dt only within the limits 

of a half-plane formed by the vectors A(t)z(t) and b(t)u, which does not, 

in general, contain the point y(t). A simple pursuit (dz(t) aimed at 

y(t)) would be possible if Equation (1.6), instead of a term b(t) U, con- 

tained a term B(t)u, where B(t) is a nonsingular n-by-n matrix and u is 

an n-dimensional vector. 

We shall transform the problem formulated above into a form which is 

suitable for further consideration. By the change of variables x = z - y, 

Y = y, Equation (1.6) is transformed (taking Equation (1.1) into account) 

into the equation 

dz(t) = W)(+) + ?.I($)) - m(t, y(t)) + b(t)uldt - R(t, y(t))dq(t) (2.4) 

Now the problem is formulated in the following manner: 

Probleln A. Given the values T > 0, E > 0, N > 0 and p < 1, it is re- 

quired to find an admissible control function u”[t, n, yl satisfying the 

condition (2.3) and such that if u = u” in Equation (2.4), the condition 

is satisfied if 

P[\\z(T)ll< s; s(O), y(O)l>P (2.5) 

II ~(0) II G I’+‘, II y(O)ll d N (2.6) 

If a rigorous description is used, Equation (2.4) may be interpreted 

as the stochastic integral equation 

- s R Is, Y (41 dq (4 (2.7) 
0 

We should note, in conclusion, that we are considering the problem of 

efficiently defining a control function u”. Therefore, in what follows 

we shall not try to calculate a solution which is (in some sense) the 

best solution. For this same reason, we shall restrict ourselves to the 
linear case. All of the reasoning may be applied to more general non- 

linear cases, but an efficient calculation of uO[t, x, yl is difficult 
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in nonlinear cases. 

Finally, we must emphasize that the statement of the problem assumes 

that the functions nr(t, y), R(t, y), A(t) and b(t) are known and satisfy 
the conditions stated in Section 1. 

3. Fundamental result. Let us formulate a theorem on the control 
function u” which provides a solution of Problem A. 

Let us suppose that the system prescribed by the equation 

dxfdt = A (t) x + b (t) u (W 

will be complete1 
7 

controllable in the interval [O, 7’1. This means that 
for any point x(l’, z(*) and for the interval [t,, t,l E [O, ~1, t2 > tI, 
there exists a control function u bringing the point x(l) to the point 
x(*) during the time tl< t<f2. In other words, there exists a continu- 
ous (or sectionally continuous) function u(t) such that if it is sub- 
stituted into Equation (3. l), one of its solutions x(t) will satisfy the 
conditions x(t,) = .x(l), x(t,) = x(*). 

Let us derive a sufficient condition for controllability. We shall 
use the sybol F( t, T) = {fi .(t, T)) to denote the fundamental matrix of 

solutions of the system (3.1) (f..(~, T) = 6..), the symbol F-‘(t, 

G(t, 1) = {g . .(t, 5)) to denote iie inverse Af the matrix F, and the 
T) = 

symbol h(t, :J = {hi(t, T)) to denote the vector G(t, v)b(t). 

In accordance with the results of an earlier article [ll, pp. %4-9661, 
a sufficient condition for complete controllability of the system (3.1) 
is that the functions hi(t, T) be completely linearly independent (with 
respect to t for fixed T, that is, that the linear combination 
ql,(t, 7) + . . . t h,,h,( t, T) should not vanish identically anywhere in 
the interval T < t < T if A,* t . . . + An2 # 0. 

For complete linear independence of the functions {hi) it is suffi- 
cient 1121 that the vectors L,(t), . . . , L,(t) be linearly independent 
for all t E [O, ~1, (almost all t E LO, T] 1. Here 

~5, (0 = b 01, &+I (0 = y - A (t) Lk (t) (ksl,. . . ,n-ii) 

We shall denote the condition of independence of the vectors L,(t), 

. . . ) L,(t) by condition L. 

It should be noted that the matrix G*(t, T) = S(t) satisfies the 
equation 

dS/dt = - A* (t) S (3.2) 
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where the symbol l denotes the transpose; therefore, the expression 
h,h,k, Tl + . . . t h,,h,(t, ~1 may be considered as the scalar product 
(y(t) x b(t)), which is of fundamental importance in Pontriagin's 
maxknn principle [lo]. Here the vector 

is a solution of the equation 

d\p Jdt = - A* W 9 (3.3) 

Consequently, it is sufficient for complete controllability of the 
system (3.1) that the scalar product (y(t) x b(t)) should not vanish 
identically for any nontrivial solution v(t) of Equation (3.31. 

It should be noted that the concept of controllability of a linear 

system has been considered by a number of authors from various viewpoints 
[lo-141. 

lhe following statement is true. 

Theorem 3.1. In the interval [O, ~1 let the controllability condition 
L be satisfied, let the functions A(t), b(t), M(t), and R(t, y) be con- 
tinuous; let the function R(t, y) 
conditions in y 

= {rij(t, y)) satisfy the Lipschitz 

1 rtj (t, y(l)) - rij (tf y(*)) I< K [ y(l) - ye) 1 

and be bounded so that 

\cu(t*Y)I<oW 

(the function 02(t) is continuous if t E [O, T]). 

(3.4) 

(3.5) 

l'hen for any numbers E > 0, N > 0 and p < 1 it is possible to con- 
struct an admissible control function u = uO[t, x, yl which satisfies 
the conditions of Problem A. This control function may be chosen as a 
linear function 

no 1t,s,y1 = 5 rl4Wi + vi(t) Yil (3.6) 
i-1 

where pi(t), vi(t) are continuous functions. 

Determining the functions p.(t) and v.(t) reduces to solving the 
Cauchy problem with known initfal conditjons for a system of ordinary 
differential equations with the arvnt t E [O, Tl. 'Ihe coefficients 
of these equations are determined by the functions A(t), b(t), M(t) and 
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therefore Problem A is solved as efficiently as the Cauchy problem is 

solved. 

4. Method of solution. To solve Problem A we shall use a method 
similar to the Liapunov function method in the theory of stability of 

motion [Z, 31. 

Let us transform Problem A somewhat. From the Chebyshev inequality 
r13 

to satisfy condition (2.5) it is sufficient that the inequality 

M { II 5 mll”; 5 (Oh Y WI< (1 - PI ea (U~(O)lldNt ll~('J)lliN) (4.2) 

be satisfied. 

In solving Problem A, therefore, we shall hereafter look for a control 

function u" satisfying not condition (2.5) but the somewhat stronger re- 

quirement (4.2). 'Ihe Chebyshev inequality (4.1) gives a crude estimate 

of the value of pcllzll >el, but th e replacement of condition (2.5) by 

condition (4.2) is justified by the fact that we are considering not the 

best control function but an efficiently calculable control function U' 

satisfying the conditions of Problem A. 

Let us formulate a sufficient condition for u". 

‘lleorem 4.1. If it is possible to demonstrate a continuously differ- 

entiable function v[t, z, yl which has the form 
(4.3) 

TI 

21 lC%Yl = 2 IaZj (t) Gxj + 2Pij (t) ziYj + Tij lt) ?liYjl + h tt> (E [O, TI) 
i, j=l 

satisfies the conditions 

V [o,%yl < (1 -P) ea (ll~ll<~, nYll<W (4.4) 

v[KWl=llqa (4.5) 

and has a derivative (caKv)/dt; ~'1 [7,9] which for u = u"[t, X, yl is 

non-positive by virtue of Equations (1.1) and (2.41, with 

dM {VI ( 7; u” < 1 - c (ZP)’ (c>O - con&) 

then the control function u" satisfies the conditions of Problerr A. 

i& us recall that (&f{v)/dt; u”) means (t = T, x = 5, y = q): 

(4.6) 
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(~~)=lim{~IM{~It,z(t),Y(t)l--vlr,z(~),Y(~)ll~(T)=e,Y(~)=?j 

as t47+0 (4.7) 

and is defined by the infinitesimal generating operator [151 of the pro- 

cess {x(t), y(t)). 

Proof of Theorea 4.1. ‘lhe stochastic process {x( t 1, y( t I), described 

by Equations (1.5) and (2.71, is continuable over the interval [O, ~1 
and satisfies the conditions (see, for example, [l, pp.251,2571 I 

~ol~(~)ll’+lIY(~)Ila~ < 00 (4.8) 

WW--s(r)lW=L Y(z)=rl}=(t--r)[A(‘F)(E+9)- 

-~~~,rJ~+~~‘F~~~~,~,)11ll+o(~--7)~~+IlEn~+n~u~~“~ (4.9) 

M {Y W - Y (r) I Y (r) = VI = m (‘c, rl) (t - r)+ o (t - r) (I+ II rlll;v (4.10) 

J!f {Pi (Q - zi (0 Iq Q) -~j(rNI+)=E, YW=rl)= 
= (r- t)~lj(~,tl)+(l+~EUa+n?~a)O(t-~) (4h11) 

M {Is 0) - 34 WI [~j (t) - yj HI 15 (4 = E, Y (4 = rll = 
= (z -~)~U(Z~rJ)+(~+II~Ila+~~ll’)o(~-~) (4.12) 

M{IY~(Q-Y~(~)I [Yj(t)-Yj(z)ll5(Z)=~, Y(r)=‘rII= 

= (t - r) otj (r, tl) + (I+ u rljl a) 0 (t - r) (4.13) 

Here the symbol o(t - T) denotes a quantity which tends to zero faster 

than t - T, and the estimate o(t - T) is uniform with respect to c, q, 
T E Lo, 27. 

Calculating the derivative (&uI/dt; UI by virtue of Equations (1.1) 
and (2.4) (or, equivalently, by virtue of Equations (1.5) and (2.7)) and 
taking Equations (4.9) to (4.13) into account, we obtain* (at the point 

(t = T, x(v) = c, y(T) = ?jl 

l The calculations are omitted here. The order of calculating dM{v)/dt, 
starting from the intuitive description of the stochastic process. is 

discussed, for example, in 191. 
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It should be noted that as a result of Equations (4.9) to (4.13), for 
each admissible control function u the following estimate is also valid 

M(r It, s(t)* Y WI -W,~(~), Y(qllqq=E9 ?/(@=q)= 

= (t-r) (T; ) 22 + 0 (t - r) (1 + II E II2 + II rl II”) (4.15) 

We set up the quantity 

v It; 5 (O), Y (O)l = Me [h 2 (49 Y WI; 5 (% Y (0)) (4.16) 

Since the process {x(t) y(t)) is continuable over LO, Tl and satisfies 
condition (4.8), it follows that the quantity (4.16) is defined and 
finite for all values t E CO, Tl. 

Let us calculate the change V(t) - V(r). From the formula for repeated 
conditional mathematical expectations (see, for example, [l, pp.38-401), 
we have 

cJ [C x(O), y (0)I -v 1% 2 (O), Y (011 = 
= M w @ it, x(t), Y @)I --v[r, x@), !/(~)I(+), Y@)Ji x(O), Y(O)) (4.17) 

Taking the estimates (4.8) and (4.15) into consideration, we can 
write the equality 

Vi4 x(O), Y(O)1 --v[? +.% Y(O)1 = (4.18) 

=(f-r)M{(d;;l -; u); x(o),Y(o)}+ o(t--)D (D= con&) 

From (4.18) we conclude that the quantity V[t; r(O), y(O)1 is continu- 
ous with respect to time t and that (for u = u") the relations 

dvP:$h Y(O)1 = M((i!!p’; p)}< -CcM{(U”)~} \<o (4.19) 

are valid. 
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Integrating (4.19) with respect to t between the limits t = 0 and 
t = T, and remembering that 

v: 10; 5 ((9, y (W = ?J to, 5 (Oh Y 601 

v V’; 2 (O), y @)I = M ln V, 5 (T), Y (VI; 5 (Oh Y (0)) = M {It x (T)ff 1 

by virtue of (4.5)) we obtain the inequality 

M{~s(T)$KdO, x(o), Y &‘)I (4.20) 

If 11x (O)I(<h’, IIY(o)II\<N, then by virtue of (4.4) we obtain the in- 
equa li ty 

which proves the validity of the theorem. 

Thus, in order to solve the problem, we must find functions u and u” 
which Satisfy the conditions of Theorem 4.1. Like the problem of finding 
the Liapunov function in the theory of stability of motion, this problem 
is highly indefinite. However, in the present case we shall compare 
Problem A with a problem in optimal control, in the solution of which the 
Liapunov function v and the control function u = u” are uniquely defined. 
It is worth noting that such a method may also be useful sometimes in 
finding the Liapunov function for problems in the theary of stabilitf of 
mot ion. 

5. Supplementary material from the theory of optimal con- 
trol. Let us mention some supplementary facts which will be used in the 
following section for the proof of l’heorem 3.1. We consider the system 

of equations 

&t 
-= M(t)y, dt $= A(t)x+ [A(t) 

which coincides with Equations (1.1) and (2.4) 
latter the random terms R(t, y) dqft). 

We formulate an optimal control problem for 

Problen B(c). It is required to determine a 

- M (01 Y + b (4 u (5.1) 

if we eliminate from the 

the system (5.1). 

control function u = u* _ _ 
[C; t, X, y] such that for each initial condition n(r), y(r) (7 E [O,Tl) 
the functional 

T 

Jk; x(q, y&J; ul = \ cue [c; t, x (t>, Y (41 dt + 112 m ff (5.2) 
+ 
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takes on the minimum possible value. 

Problem B(c) is the problem of analytically designing [16] an optimal 
control function u, but here we are considering the problem, unlike [16I, 
for a finite interval of time LO, fl. S’ imilar problems have been con- 
sidered, for example, in cl71 and [181. 

Let us describe a solution of Problem B(c) based on the method of 
dynamic prograrmning. 

Let the functions WCC; t, x, yl and u*[c; t, x, yl satisfy the con- 
ditions 

( -$ ; (5.1), u*) + c [u* [c; t, 2, y]12 = *in [(g ; (5.1), 2~) + cz21= 0 (5.3) 

~[c, T, 5, ~1 = [XII” (5.4) 

Here the symbol (dw/dt; (5.1), u) stands for the derivative of the 

function w by virtue of the system (5.1) for a chosen u. 

Then u*[c; t, x, yl is an optimal control function satisfying the con- 

ditions of Problem B(c), and we have the equality 

w [c; z, 2 (z), y (z)] = min J [c; 5 (z), y(z); u] = J [c; 5 (Z), y(T); u*l (5.5) 

For completeness of presentation, we shall give a proof of this state- 

ment. For u = u*, from (5.3), integrating with respect to t from t = T 

to t = T and taking (5.41 into account, we obtain the equality 

w [c; z, 2 (r), y WI = [c In* [c; t, 5 (t), Y (t)l12dt + 115 0’) II” (5.8) 
5 

For u # u*, from (5.3) we obtain the inequality 

( $; (5.i), u)>-ceus (5.7) 

Integrating this inequality, we obtain the inequality 

w[c; r, z(r), Y(r)l&‘(t)dt+ Oz(T)P 
+ 

(5.8) 

‘lhe inequality (5.7) and the inequality (5.8) together prove the 
validity of the statement that u* is an optimal function. 

The functions w and u* satisfying conditions (5.3) and (5.4) exist 
and are of the form 
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w [Ci t, z, ?/I = lIatj (‘9 t, W3 + 2Pfj (‘9 t, Wj + T{j (‘8 t)Y#Yjl (5.9) 
f. j=1 

Let us prove this. We set up equations for the coefficients a. ij' Pij 

Yij, Ui t 'if obtained from the conditions of (5.3). For this purpose we 

must eliminate u* from (5.3), making use of the fact that for u = u* 

there is a minimum, that is, the equality 

(A[($ (54 u) + cuqu* = 0 (5.11) 

must be satisfied. 

After carrying out the indicated operations we obtain the following 

equations for w and u*: 

g + i$l [z (W tt) % + tati tt) - mi WI Yj) + z W W ?.Jj] - 
1 ? -_ 

4c [z is1 
bi (4 g-7 = 0 

i 

2cu++ i b&)$=0 
i=l i 

(5.12) 

(5.13) 

On the left side of (5.12) we equate the coefficients of identical 

expressions xix., x .y ., yiyj to zero, thus obtaining a system of equa- 

tions from which we'& determine the coefficients oij(c, t), Pij(c, t), 

Yij(', t). Let us write this system in normal form 

daij 1 
i 

dt -ck I=1 

ski% jbk (t) bl (t) - 5 (‘%kakj (0 + ajkaki (t)) 

k=l 

dflij 1 
dt - c i %&#h (t) bz (t) - 2 i [&ik (akj - mkj) + /hkmkjl (5.14) 

k. Z=l k=l 

drij 1 
dt - 7 i /%&zjbk (t) bl (t) - 

k, I=1 

- i [@ki (akj (t) - mki (t)) + rikmkj @) + rjkmki (Ql 
k=l 

'Ibe system of Equations (5.14) is to be solved in the internal LO, ~1 
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for the following initial conditions: 

&cj (C, T) = bj, Bij (c9 T, = Of Y*j tc, T, = O (hii= 1, bij= 0, i#i) (5.15) 

as found from the boundary condition (5.4) for W[C; t, n, yl. 

It can be shown that the system of Equations (5.14) has a unique solu- 
tion satisfying the conditions (5.15) and continuable over the entire 
interval LO, Tl, for any number c > 0. Indeed, the right-hand parts of 
tk Feations (5.14) satisfy the conditions for the local existence and 
uniqueness of solutions. It is therefore sufficient to show that the 
solutions a ij(c, t), Pij(c, t), yij(c, t) which exist at tk point (5.15) 
can k continued in t over the entlre [O, ?“I in the direction of decreas- 
ing t. Since the right-hand parts of (5.14) contain second powers of the 
U&IIOWII functions oijj Pij, yij’ it is necessary to show this. 

To prove .tk continuability of the solutions a. ., 
that the quadratic form ur[c; 

pi ., 

Ilull = 1) 
t, x, yl is uniforml;Jboun ed 

y. ., w note 
(11 t#or IJxJ[~ + 

f or all those values t ~(6, T) for which a solution exists 
for the system (5.14) with the initial condition (5.15). Indeed, from 
the definition of the quantity W, the inequalities 

w [c; 6 5, 31 > 0 

W[C; r, 2(z), y(z)l=min,J[c; z(r), y(z); ul Q 

\<J[c;~(z),y(z); u=Ol\<Q =mnst (5.16) 

II 2 (z) IIS + II Y (f) II” = 1 if fE(fi, Tl 

are satisfied. 

From the inequalities (5.16) it follows that the solutions of (5.14), 
(5.16) are uniformly bounded and therefore continuable over the entire 
interval [O, Tl. 

Our assertion is proved. 

Thus, there exists a function w[c; t, x, yl which satisfies the con- 
ditions (5.3) and is expressed by the quadratic form (5.9). From (5.9) 
and the equality (5.11) it follows that the control function u* satisfies 
the equation 

2cu* + 2 5 lc%j (c, r) zj + Pij (c, t) YjI bi (t) = 0 
is1 

that is, 
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u+ [c; t, 5, y] = - i h tt) I&ii tc* t) sj + pij (CT t) yjl 
i==l 
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(5.17) 

and consequently, by virtue of (5.101, 

pj (c, t) = - i h(t)%j(C, t), Yj (C, t) = - 2 hi(t) bj(C, t) (5.18) 
i-1 i-1 

For the subsequent discussion it is important that as the quantity 

c > 0 decreases to zero, the function r[c; 0, x, yl also decreases to 
zero (if llzj1’ + l[yjj2 = const). 

In fact, the following statement is true: 

Lem 5.1. In the interval [O, ~1 let the system 

da:/dt=A(t)s+b(t)u (5.19) 

satisfy the condition L (p. 321) for complete controllability. Then for 
any number LJ > 0 it is possible to find a number 6 > 0 such that 

~[c;O,~,YI<A(~~I~~+~YU~) (5.20) 
T 

s 
(max(w[c; t, z, y] for nzll*+u~U~ =i)}clt <A (5.21) 

0 

provided o < c < 6. 

Proof. Let a number A > 0 be given. We select a numbur 6 such that 
the inequalities 

~ITbG?/l <(u~u”+IIYu96 (O<c<i, tEIT--6, TI), 66 < $ (5.22) 

are satisfied. 

Here 5 is some fixed number greater than unity. It is possible to 
select a number 6 > 0. Indeed, 

where x(x, y, t, T) is the solution of the system (5.1) resulting from 
the initial conditions n(t) = X, y(t) = y (for t<r<?‘, u = 0). 

‘he solutions of the system (5.1) for u = 0 satisfy the inequality 

[19, p.231 
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&M (+--I) (5.24) 

where K = mx {Jaij(t)l, /mij(t)l); the inequality 

w [c; t, 5, Yl <(II4I” + II Y II*)@K(*-t) 

therefore follows from (5.23). 

(5.25) 

Equation (5.25) proves that a number2) may be chosen and gives an 

estimate for it. We shall therefore assume that such a number 6 > 0 has 

been chosen. 

Let us consider an auxiliary problem. 

Prob lea C(T). Given an instant of time v E [O, ~1 and a 

noY,M12 + llYl12 = 1). It is required to find the control 

UT(~) such that the solution x(t), y(t) of the system (5.1) 

the conditions 

5 (r) = $0, Y(T) = Yo, s(T)=0 

T 

s 
~,~(t)dt = min 

* 

point 

function 

satisfies 

(5.26) 

(5.27) 

Lt. us briefly outline the solution of Problem C(v) in accordance with 

the method indicated for the solution of such problems in [201. The solu- 

tion r(t) of the second equation of (5.1) can be written by Cauchy’s 

formula (for t = T) as 

2(T)=F(T,r)4+iF(T,r)F-1(f,r){[A(t)-M(f)l~(t)+~(~)u(~))~~ 
+ (5.28) 

where F(t, T) is the fundamental matrix (F(T, -r) = E) of the system 

(5.19) (for u = 0). Since y(t) = M((t, v)y,,, where Mt, T) is the funda- 

mental matrix (M(T, -r) = E) of the first equation of (5.1) and since we 

must have x = 0 at time t = T, the equation for uT( t) follows from (5.28) 

(after nnrltiplying (5.28) by F”(T, 7)) 

T 

x0 + F-l@, z)UA(t)- 
5 

M(t)]M(t, r)yo+ b(qu,(wt = 0 (5.29) 

+ 

where the condition (5.27) must be satisfied. The solution of the prob- 

1es1 (5.27), (5.29) is described in [ZO] For complete controllability of 

the system (5.19), a solution uv(f) of the problem exists and is defined 
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from the conditions 

UT @) = A2 [qcgc Y,, 4 2 hi% (6 7) (5.30) 
f-1 

Here 

(5.32) 

t 

h (t, z) = F-l (t, z) b (t) 

and the Aio are the solutions of the problem (5.31), (5.32). The problem 
(5.31)) (5.32) is the problem of finding the minimum of a quadratic form 
(5.31) in the variables hi under the linear condition (5.32). The solu- 
tion of such a problem is well known, 

For the rest of the discussion it is important that the quantity 

(5.37) is uniformly bounded for T E [O, T - 91, IIx,,II 2 + ]\y,,II 2 = 1 for 
every 6> 0. Indeed, from (5.30) and (5.31) it follows that 

min[iu2(t)dl]=jP.‘(t)dl=h21zo,yo,~l (5.33) 
T T 

quantity A2[x0, ya, -rl is uniformly bounded above in the 
E [O, T-e], since the quantity (5.31) is bounded below by 
number for T E [O, T -@I. Indeed, this quantity is continu- 

Hut the 
interval T 
a positive 
ous with respect to -r, and by virtue of the complete controllability it 
is positive for all T E (0, T). 

We now turn directly to the proof of learna 5.1. 

We select a number 6 > 0 small enough to satisfy the inequality 

6 max [T, 1]< min & for re[O, T -61] (5.34) 

Since the inequality 

w [c; z, .2,, yO] = min S [c; 2 (z)] 

[Y (z); UI G J tc; z (4, Y (4, u,l = a2 Is(z), Y (4, ~1 (x w = “o* Y w = Yo) 

is valid, it follows that for II nlj2 + IIyj12 = 1, O<t< T -6, and for 
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c < 6 the inequalities 

are valid. 

A w [c; 4 2, Yl < QT P w Ic; 0, 3, 31 < $ (5.35) 

lhe inequalities (5.22) and (5.35) prove the lenvaa. 

6. hoof of lbcorem 3.1. We construct the functions II and rr” 

satisfying the conditions of Theorem 4.1. We select a number cO small 

enough to satisfy the conditions 

w IqJ; 0, 2, Yl < 8* (1 - PI ( II 2 IP + II Y IP) 
8N' (6-l) 

(6.2) 

Such a number cO can be selected in accordance with Lemna 5.1. 

We set 

r It, 5, Yl = w kJ; t, 2, yl + [ (2?q (3% (7) cp (z) dz (6.3) 
t 

no It, 2, yl = u* [co; t, z, Yl (6.4) 

For such a choice the functions v and u” will satisfy the conditions 

of Theorem 4.1, and consequently the conditions of ‘Iheorem 3.1 as well. 

Indeed, by virtue of (5.4), (6.1) and (6.2), the function v satisfies 

the condition 

‘Ihe derivative (&v)/dt; (l.l), (1.6), u” = u*) differs from the 

derivative (&VI/&; (5.1), u” = u*) by the term 

and therefore 

( dM (01 
- ; (IA), (1.6), u” = U* dt ) 

= -c, (u”)’ - 4,rPaa(t) cp (t) -+ 
(6.5) 

+ i I&j (Co, t, -@iI tcgt f, + Tij (Cot t)l Qij < - CO(U’)* < 0 
I. j-1 
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‘Ihus, the caditiams of ‘Iheorem 4.1 are indeed satisfied. 'lhis means 
that the function no = u*[ce t, %, y] satisfies the conditions of 

lheorem 3.1, which proves this theorem. 

We note that the control function u" we have constructed has a minimum 
property, namely, that the control function u" = u* minimizes the func- 
tional 

where 

minJ* = rtO,& Yl (6.6) 

In conclusion, we note one more fact. 'Ihe control function u" which 
solves the tracking problem A is constructed by the following rule: At 
each instant of time t = T, for the realized values r(t), Y(T) the control 

function uO[T, x(T), y(T)1 coincides with the control function u* of 
[co; 7, Z(v), y(v)], which is the solution of the auxiliary optimal con- 
trol problem B(c) (and which also assures that the point r(t) will be 
brought into a small neig~rh~ of the point x = 0 at time t = T). 

The control function u* is an optimal control function for the system 
(5.1) and minimizes (5.2), where for t > T the function y(t) is deter- 
ministic and coincides with My(t)ly(t)) of the stochastic system. In 
other words, the control function u" in the stochastic tracking problem 
is constructed at each instant of time t = T at the point X(T), Y(T) in 
the same way as it would be constructed in an analogous deterministic 
tracking problem, where the future. behavior of the tracked motion y(t) 
(t > T) would coincide with the prediction of the future mathematical 
expectation of the tracked motion. Naturally, the control function u"=u* 
must he chosen to be sufficiently strong (the number c = cg in the 
auxiliary problem B(c) must be sufficiently smsll). 

An example of the problem considered in the present article may be 
found in the problem of making a rotating body which is controlled (by 
changes in moment) agree within a time T (in angle and speed of rotation) 
with a rotating body subject to random pulse momants. 
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